
 

 

                                   Abstract 
 

This paper presents a fully automated 

symmetry-integrated brain injury detection method for 

magnetic resonance imaging (MRI) sequences. One of the 

limitations of current injury detection methods often 

involves a large amount of training data or a prior model 

that is only applicable to a limited domain of brain slices, 

with low computational efficiency and robustness. Our 

proposed approach can detect injuries from a wide variety 

of brain images since it makes use of symmetry as a 

dominant feature, and does not rely on any prior models 

and training phases. The approach consists of the following 

steps: (a) symmetry integrated segmentation of brain slices 

based on symmetry affinity matrix, (b) computation of 

kurtosis and skewness of symmetry affinity matrix to find 

potential asymmetric regions, (c) clustering of the pixels in 

symmetry affinity matrix using a 3D relaxation algorithm, 

(d) fusion of the results of (b) and (c) to obtain refined 

asymmetric regions, (e) Gaussian mixture model for 

unsupervised classification of potential asymmetric regions 

as the set of regions corresponding to brain injuries. 

Experimental results are carried out to demonstrate the 

efficacy of the approach. 

1. Introduction 

Magnetic resonance imaging (MRI) is a medical imaging 

technique most commonly used in radiology to visualize 

the structure and function of the body. It provides detailed 

images of the body in any plane with higher discrimination 

than other radiology imaging methods such as CT, SPECT, 

etc. Specifically, mining of brain injuries that appear in an 

MRI sequence is an important task that assists medical 

professionals to describe the appropriate treatment. 

Traditionally, the boundary or region of an injury in 

magnetic resonance imaging is usually traced by hand. This 

manual approach is time consuming, subjective and error 

prone. The computer-aided diagnosis on brain MRI reduces 

the manual workload by a combination of image processing 

and pattern recognition techniques. An efficient injury 

detection algorithm is important for diagnosis, planning 

and treatment. Currently in many computer-aided 

applications, automatic or semi-automatic image 

segmentation or detection methods are recommended for 

clinical treatment that can significantly reduce the time and 

make such methods practical. Previous works [1-6], based 

on 2D and 3D image analysis, detect brain injuries 

reasonably well by using training sets and prior models, as 

well as using efficient preprocessing like registration, with 

injury boundary outlined. Numerous features are used in 

model matching schemes, like image intensity, texture, 

shape, etc. In this paper, symmetry is integrated with image 

analysis as a new kind of feature. The integration allows 

fully automatic brain injury detection, without training and 

prior modeling, and it is applicable to a wider range of MRI 

data with different ages and injury characteristics. 

     The rest of this paper is organized as follows. In section 

2, we give an overview of related work and our 

contributions. In section 3, the technical details of our work 

are provided. Section 4 gives experimental results. Finally, 

conclusions are given in section 5. 

2. Related Works and Our Contributions 

2.1. Related Works 

There are many challenges associated with automated 

detection of brain injuries. The brain injuries are always 

different in size, shape, and may appear in any location with 

different image intensities. Some injuries also deform other 

normal and healthy tissue structures. In order to solve those 

challenges, state-of-the-art region-of-interest (ROI) 

extraction techniques basically use two kinds of methods: 

tissue classification/segmentation and abnormality 

extraction. The tissue classification approach [1, 2] starts 

with brain segmentation based on a prior model of tissue, 

and extracts ROIs from classified clusters. Unfortunately, 

in order to obtain satisfactory classification results, large 

amounts of training data or a complex prior model is 

required, and the range of application is strictly restricted 

by the domain of training phase. The abnormality/target 

extraction approach [3, 4] generally builds a stochastic 

model for normal brain tissues, and simultaneously detects  

abnormality that is not a well fit into the model. However, it 
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Table 1. Comparison of related symmetry integration methods and this paper

Authors Principle of Techniques Datasets and Results Comments 

Saha et al. 

[12] 

Brain MRI segmentation 

using a fuzzy point 

symmetry based genetic 

clustering technique. 

Datasets: Totally 181 MRI slices, 

shows seven slices in results. 

Results: Segmentation results in 

2D; Minkowski Score to measure 

the quality of clustering compared 

with ground-truth. 

+  Assignment of points to clusters in genetic 

algorithm by point symmetry based distance 

rather than Euclidean distance; no a priori info. 

- Time consuming; many noisy regions in 

results; cope with internal symmetry within a 

region only. 

Bergo et 

al.  [13] 

MRI segmentation based 

on the analysis of texture 

symmetry. 

Datasets: Five images from five 

patients. 

Results: Lesion segmentation 

results in 2D and 3D, with 

ground-truth. 

+ Not rely on a template; good generality; 

enhance texture symmetry. 

-  Not robust to changes in parameters; uses 

only local symmetry. 

Ray et al. 

[14] 

Locate brain abnormality 

by finding a bounding 

box around it using the 

symmetry analysis.  

Datasets: Six images - no source. 

Results: Abnormality detection 

results in 2D; no ground-truth; Dice 

Coefficient to measure the 

abnormality detection performance. 

+ No registration; no training image; can be 

implemented in real-time. 

- Need the reference (template) image; 

abnormality boundary in segmentation result is 

not well outlined. 

Sun, 

Bhanu and 

Bhanu - 

This paper 

Detect brain injury in 

MRI by symmetry 

integration in several 

steps associated with 

segmentation, clustering 

and classification. 

Datasets: MRI sequences of 2 

patients, with 16 slices for each; 

shows results on 4 slices of each 

patient; 

Results: Both segmentation and 

injury detection results in 2D with 

ground-truth; Error rate to measure 

the detection accuracy compared to 

ground-truth in 2D and 3D. 

+ Integrates symmetry in all steps; no prior 

model or template; no training data; good 

generality; efficient segmentation algorithm; 

uses global symmetry rather than local or 

internal symmetry. 

- Some very low contrast injured regions are 

missed. 

   

is always challenging to build a complete prior model in 

order to cover enough tissue information. Another 

abnormality extraction method is called digital subtraction 

[5], which is useful to track structure or volume changes of 

brain collected at different times. The accurate subtraction 

relies highly on normalization and registration [6]. As a 

result, most of the current ROI extraction methods highly 

depend on the quality of preprocessing and prior 

knowledge.  Our method overcomes the above limitations 

to a great extent by integrating symmetry information in 

segmentation and abnormality extraction. 

2.2. Our Contributions 

    Related works in [12, 13, 14] basically integrate 

symmetry information into brain MRI segmentation in only 

a single step, whereas our method integrates symmetry in 

all the steps of segmentation, clustering and classification 

in the whole system. The limitations of these techniques 

compared to our method are shown in Table 1. We 

formulate the proposed new idea based on the observation 

that for most abnormality detection methods, though 

different in principle, accept a common criterion that 

abnormal regions are detected by their properties that 

deviate from the expected normal and healthy tissue 

properties. Specified to our case, since most of the injuries 

are asymmetric with their mirror regions against the 

symmetry axis, while the other healthy brain structures are 

highly symmetric, we are able to detect injuries by 

symmetry integration. Therefore, asymmetry is regarded as 

a distinct property of injuries that deviates from other 

normal symmetric tissues. By integrating symmetry, we 

overcome the limitations of other approaches and this paper 

makes following contributions: 

(a) By symmetry integration, our method does not need 

prior models for injury detection. We eliminate symmetric 

tissues without further classifying them by a large amount 

of training data. Furthermore, symmetry information is able 

to classify brain image into symmetric and asymmetric 

regions, and our results show that the extracted asymmetric 

regions cover almost all injuries or other abnormalities. 

(b) Unsupervised classification can be used to classify 

asymmetric regions into injuries and other normal regions 

by features composed of image intensities and 3D brain 

asymmetry volumes, without preprocessing and training.  

(c) Our method integrates symmetry information in almost 

all steps in approach, whereas other works only integrate 

symmetry in single step.  
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3. Technical Approach 

     The overall diagram of our method, with example 

results of each step, is shown in Fig. 1. Since symmetry is 

the most important feature in our method, we integrate 

symmetry in several steps that can be seen in Fig 1: 

(1) Symmetry affinity matrix computation in Fig 1(b); 

(2) Symmetry-integrated image segmentation in Fig 1(c);  

(3) Asymmetric region extraction by kurtosis and skewness 

of symmetry affinity, as in Fig 1(d); 

(4) Cluster and identify asymmetric groups in Fig 1(e) (f). 

(5) Classify asymmetric regions into injury and non-injury 

using intensity and 3D asymmetry volume as in Fig 1(h). 

 In step (1),  a symmetry affinity matrix is obtained, that 

is used frequently as a measurement of symmetry in later 

steps. Step (2) enhances symmetry level of segmentation 

results to make sure that most symmetric parts are 

segmented appropriately. Thus it prevents misclassification 

of symmetric parts into asymmetric regions in a later step. 

In step (3), kurtosis and skewness of symmetry affinity 

matrix are computed and they are used to extract 

asymmetric regions from segmented parts. Meanwhile in 

step (4), symmetry affinity matrix is also used for clustering 

and identification of asymmetric groups. Results from step  

(3) and (4) are fused to obtain refined asymmetric regions 

in Fig 1(g). Finally, an unsupervised classifier is used to 

extract injuries from the asymmetric regions. 

 

3.1. Symmetry Extraction and the Symmetry 

Affinity Matrix 
 

    In order to integrate symmetry, a symmetry 

measurement scheme of MRI image is needed. We use 

global symmetry constellations of features [7] to detect the 

reflective symmetry axis for the brain, as in Fig 1(a). A 

symmetry affinity matrix as in Fig 1(b), measuring the 

symmetry level of each pixel with respect to its symmetry 

counterpart pixel reflected by the axis, is computed by 

curvature of gradient vector flow (CGVF) [8]: 

 

                                                                                         (1) 

 

Let the GVF of image be: 

 

                                                                                         (2) 

  

In equation (1), /xu u x= ∂ ∂ , /yu u y= ∂ ∂ , /xv v x= ∂ ∂ , 

/yv v y= ∂ ∂ are the first derivatives of pixel along x and y 

                   

                                                                        Fig 1. Overall system diagram 
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directions. Considering a pixel ( , )i ix y , we define its 

symmetry affinity as: 

 

 (3)    

 

where             is the symmetric counterpart of            by the 

symmetry axis.  If the two points have locally symmetric 

fields, then values of                    and                   should be 

closer. Three other symmetry conditions are stated in [8], 

which can be combined with eq. (3) to build the affinity 

matrix. The brighter regions in symmetry affinity matrix 

indicate potential asymmetric fields in the image. The 

symmetry affinity matrix is further used to outline the 

symmetry constraint for pixel aggregation in a region 

growing approach for image segmentation in the next 

subsection.  

 

3.2. Symmetry-integrated Image Segmentation 
 

    Region growing segmentation accepts image intensity as 

a constraint for pixel aggregation, either by color or gray 

scale.  Recent improvements in constraint include a 

combination of texture, shape, etc., to segment regions with 

different properties. In order to make sure that symmetric 

parts are segmented appropriately, in our work, a symmetry 

constraint derived from symmetry affinity matrix is 

integrated into region growing constraint as shown below: 

 

                                                                                         (4) 

 

     and     in equation (4) are symmetry affinities of pixel i 

and neighboring region j. Equation (4) provides the 

following symmetry constraints: the first term controls the 

symmetry level, which means that if both patterns i and j 

indicate low symmetry affinities (highly symmetric), they 

are more likely to be aggregated by decreasing the 

constraint; while the second term favors more similar 

symmetry affinities. In our work, the symmetry constraint 

is combined with gray scale intensity and texture to build an 

aggregation constraint as follows: 

                                                                             

                                                                                         (5) 

 

where                  uses the intensity difference of i and j as 

gray-level constraint, and                      uses texture difference, 

obtained by Gabor filter, as the texture constraint.  Based on 

the aggregation constraint, pixel i will be aggregated into 

the neighboring region j if constraint             between them is 

below a threshold     . We call equation (5) as the symmetry 

integrated multiple constraints. After segmentation, regions 

with natural symmetric properties will be segmented 

symmetrically. An example result is shown in Fig 1(c). 

This approach will improve the performance of asymmetric 

region extraction in the next section. Note that Gupta et al. 

[10] applied symmetry integration (edge-weight) to 

enhance the symmetry level in a graph-cut segmentation 

approach. This integration has very limited improvements 

in segmentation results, compared to our method. 

 

3.3. Asymmetric Region Extraction 

    A region growing algorithm with symmetry constraints 

for pixel aggregation separates symmetric and asymmetric 

parts in segmentation results by ensuring that naturally 

symmetric parts are segmented symmetrically. The 

asymmetric region extraction basically classifies the 

segmented regions into symmetric and asymmetric regions. 

We provide a new method using kurtosis and skewness of 

symmetry affinity matrix to detect asymmetric regions. For 

a sample of n values the sample kurtosis and skewness are 

given by equations (6) and (7): 

  

 

Kurtosis:                                                                                     (6)
 

 

 

 

 

Skewness:                                                                         (7)     

                                                                                            

     

    Kurtosis is a measure of the "peakiness" of the 

probability distribution of a random variable. A larger 

kurtosis means that the probability distribution indicates a 

higher and narrower peak. Kurtosis property has been 

applied in image processing to detect the abnormality based 

on the reason that kurtosis measures the deviation of a 

distribution from the background [9]. We use kurtosis of 

symmetry affinity matrix to detect asymmetric regions, 

based on the observation that the asymmetric regions 

(brighter) in the symmetry affinity matrix can be regarded 

as abnormal targets with background, where symmetry 

affinity values of pixels are very low and smoothly 

distributed. For each segmented region the kurtosis of its 

symmetry affinity is computed using eq. (6), resulting in a 

single kurtosis value for each region. Larger kurtosis of a 

region means more deviation in its symmetry affinity 

distribution, which leads to potential asymmetry.  

      The skewness is another cue for asymmetry detection. 

Once we know the mean symmetry affinity value of a 

region, the negative skewness means that the distribution is 

left-tailed to the mean value. Since zero symmetry affinity 

means perfect symmetry, negative skewness means that the 

region affinity favors more asymmetry. The asymmetric 

region detection can be expressed as follows:
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(a) Discard symmetric regions whose mean symmetry 

affinity is quite low; note that highly symmetric regions 

will have a low affinity.  

(b) For each of the remaining regions, compute its kurtosis 

minus skewness combination g = (g4-g3) from eq. (6) and 

(7), and build a histogram for the combination g of all 

candidate regions. Larger (g4-g3) indicates a more 

asymmetric region. A threshold Ω is found to partition the 

histogram into symmetric and asymmetric regions. Regions 

with values of (g4-g3) larger than the threshold are 

extracted as asymmetric regions, as shown in Fig 1(d). 

 

3.4. Symmetry Affinity Clustering 

The purpose of asymmetric region extraction is to cover 

all the injured regions, while at the same time allowing the 

number of other normal asymmetric regions be as small as 

possible. The asymmetric regions obtained in the previous 

section can be combined with the results of symmetry 

affinity clustering to reduce the number of normal 

asymmetric regions. Symmetry affinity clustering is 

realized by 3D relaxation method based on maximizing a 

criterion function [11]. Basically this algorithm iteratively 

separates the symmetry affinity histogram into two classes, 

as symmetry and asymmetry. The original symmetry 

affinity valued between 0 and 1 is assigned as probability of 

each pixel. The mean neighborhood probability     of the ith 

pixel under consideration is denoted by the sum of the 

weighted symmetry affinities of its 8-neighborhood pixels 

from all slices at the same 2D neighborhood position, that 

build a 3D neighborhood. The mean 3D neighborhood 

probability       is shown as: 

 

                                                                                                  (8)                                                   

 

where n is the number of slices in MRI sequence, and 8n is 

the total number of pixels in 3D neighborhood     .                  

is equal to the symmetry affinity value of jth pixel in     , and           

       gives weight to each affinity of jth pixel, where less 

weight is assigned to pixels that belong to farther MRI 

slices. And the values of         satisfy the following two 

constraints:                   and                      . The first constraint 

ensures the normalization of the probability    , and the 

second constraint means that the weight of slice j+1, which 

is farther from the previous slice j, is half the value of slice j. 

The following iterative process will separate the 

distribution of symmetry affinity histogram into symmetry 

and asymmetry clusters, by updating symmetry affinity    

of ith pixel: 

 

                                                                                            (9) 

 

where      in iteration n is updated as: 

 

                                                                                                (10) 

 

 

 

and 

 

    

                                                                                                   

                                                                                                  (11) 

 

 

 

where      means the cluster of asymmetry.         and       in eq. 

(10) are the control parameters  constrained by                     , 

valued                           in our case. Normally, 2 iterations are 

enough to cluster symmetry and asymmetry pixels in 

symmetry affinity matrix, and the asymmetric clusters are 

shown in Fig 1(f). 

      The final asymmetric regions shown in Fig 1(g) are 

obtained by combing the results in Fig 1(d) and 1(f), by 

using the fact that the final asymmetric regions from 1(d) 

are extracted into 1(g) if the regions contain over 50% 

asymmetric pixels grouped by 1(f). That means if the two 

results (1(d) and 1(f)) have at least 50% overlap in common 

asymmetric fields, the regions in 1(d) are extracted as 

asymmetric regions into 1(g). The 50% overlap threshold is 

chosen by observation of results of a few testing slices, and 

it is found to be robust to MRI sequences. Lots of normal 

asymmetric regions are eliminated by this overlapping; at 

the same time all injuries or other abnormalities are 

reserved. Basically the result in Fig 1(g) contains all the 

injuries and the number of other normal asymmetric 

regions is minimized. 

  

3.5. Injury Extraction 
 

    Asymmetric regions obtained from section 3.4 are 

potential candidates for extracting injuries. An 

unsupervised Expectation Maximization (EM) classifier 

with Gaussian Mixture Model (GMM) is used to classify 

candidate asymmetric regions into two classes: injury vs. 

non-injury, basically by a 2-dimensional feature, composed 

of gray scale intensity, and the 3D asymmetry volume. The 

3D asymmetry volume is obtained by binarization of results 

in Fig 1(g), where the pixel belonged to asymmetric region 

is valued 1, and the pixel in other symmetric region is 

valued 0. The binary results of all slices in MRI sequence 

are added up to build the 3D asymmetry volume. The value 

of asymmetry volume means how frequently the 

asymmetric regions appear in slices at the same 2D position. 

If an injury exists in 3D MRI, its asymmetry in 2D slices 

will have a high value. Injuries are more likely to be 

classified into one group by using 3D asymmetry volume 
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feature. The mean value of 3D asymmetry volume of each 

asymmetric region in Fig 1(g) is used as a feature for 

classification, where the other feature is the mean gray 

scale value.  The class with larger mean 3D asymmetry 

volume is identified as the injury class, and the final injury 

regions belonging to the injury class is shown in Fig 1(h). 

 
4. Experimental Results 
 

4.1. Datasets and Parameters 
   

     We use MRI datasets provided by Loma Linda 

University Medical Center at Loma Linda, CA. It is 

composed of two sequences of MRI slices from two 

patients labeled as #A and #B. Sample slices are shown in 

Fig 2 and Fig 3. Slices in each MRI sequence are collected 

from 2D projections of different 3D brain layers for the 

same patient. Several challenging injury cases are also 

obtained from the Internet, and an example is shown in Fig 

4. The 2 major parameters in our algorithm are: threshold       

for region growing pixel aggregation criterion           in 

equation (2), and the kurtosis-skewness histogram cut 

threshold Ω for asymmetric region detection introduced in 

section 3.3. The values of the two parameters are 0.024 and 

0.22 respectively. We use the same parameter setting for 

running all slices in all MRI sequences. 

 

 
MRI

# 
a. Original Image b. Segmentation 

c. Asymmetric 

Regions 

d. Injury Regions 

(Computed) 

e. Injury Regions 

(Ground-truth) 

A6 

     

A7 

     

A9 

     

A11 

     

 

Fig 2. Example results on slices for patient #A 

( , )i jδ
tδ
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MRI

# 
a. Original Image b. Segmentation 

c. Asymmetric 

Regions 

d. Injury Regions 

(Computed) 

e. Injury Regions 

(Ground-truth) 

B7 

     

B8 

     
B9 

     

B10 

     

             

    Fig 3. Example results on slices for patient #B 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

        Fig 4.  (a) Original image; (b) Injury detection by 

region intensity-based asymmetry detection; (c) Injury 

detection by our method; (d) ground-truth injuries. 

    
      Table 2.  Results of MRI sequence for patient #A 

 

MRI# 

Total 

brain 
area 

(pixels) 

Injury 
area 

ground 

-truth 
(pixels) 

Percent  

injury 

 

Injury 
area 

comput

-ed 
(pixels) 

Error 

rate 

 

1 1885 0 0 0 0 

2 3271 0 0 0 0 

3 4421 0 0 0 0 

4 5583 66 1.18% 53 27.3% 

5 6707 145 2.16% 137 8.97% 

6 7839 741 9.45% 696 7.29% 

7 8667 707 8.16% 754 6.65% 

8 9472 583 6.15% 548 9.43% 

9 10166 552 5.43% 541 3.07% 

10 10013 548 5.47% 526 6.39% 

11 9089 189 2.08% 168 16.4% 

12 8154 108 1.32% 98 10.2% 

13 9444 0 0 0 0 

14 8825 0 0 0 0 

15 7019 0 0 0 0 

16 7086 0 0 0 0 

Total 117640 3639 3.09% 3452 7.53% 
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4.2. Experimental Results 
 

 We run our algorithms on MRI sequences of two 

patients. An example slice and the result of each step are 

shown in Fig 1. Slices from patient #A and #B are shown in 

Fig 2 and Fig 3. As can be seen in the example of patient #A 

from Fig 2 (c) to (d), the normal asymmetric regions are 

eliminated by unsupervised classifier without any training 

phase or prior model, only using a 2-dimensional feature 

introduced in section 3.5. The final injury regions in Fig 

2(d) are compared to the ground-truth injuries in 2(e), by 

finding the percentage of overlap and non-overlap area.  

The percentage of non-overlap area, also called the false 

positive rate, determines the error rate, as shown in Table 2.  

Fig 3 also shows some example results from patient #B. 

The overall error rate of patient #A by our method is 7.53% 

shown in Table 2, and 9.14% for patient #B. Comparisons 

between Fig 2(d) and (e), also between Fig 3(d) and (e) 

show that most of the injuries can be successfully extracted 

with low error rate by our method.  The error rate of 

non-overlapping area directly comes from the segmentation 

results. By searching better parameters of segmentation to 

improve the injury region boundary, the error rate can 

further be reduced. One of our future works will be focused 

on segmentation optimization by effective parameter 

searching. Table 2 provides statistical results of MRI 

sequence from patient #A. One challenging case in Fig 4 

shows the successful detection of injury by our method in 

Fig 4(c), a better result compared to the result in Fig 4(b), 

which extracts asymmetric regions by directly comparing a 

region’s intensity with its mirror region with respect to the 

symmetric axis. The error rate by our method in Fig 4(c) is 

11.4%, compared to 27.6% by the method in Fig 4(b). 

 

5.  Conclusions 
 

 This paper provides a new injury detection method for 

brain MRIs. A symmetry-integrated image segmentation is 

applied to ensure that the symmetry property is preserved in 

the segmentation results. Kurtosis and skewness are used 

with a symmetry affinity matrix to extract potential 

asymmetric regions. An asymmetry grouping using 3D 

relaxation algorithm is combined to further refine the 

asymmetric regions. Brain injuries are finally extracted 

from asymmetric regions using an unsupervised classifier 

based on the Gaussian mixture model. Both qualitative and 

quantitative results on the data from the two patients show 

that the volume of the computed injury closely 

approximates the ground-truth. In the future we will 

evaluate the approach on larger scale of datasets. 
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